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Abstract: We present a novel approach for computing biomolecular interaction binding affinities based on
a simple path integral solution of the Fokker-Planck equation. Computing the free energy of protein-ligand
interactions can expedite structure-based drug design. Traditionally, the problem is seen through the lens
of statistical thermodynamics. The computations can become, however, prohibitively long for the change
in the free energy upon binding to be determined accurately. In this work, we present a different approach
based on a stochastic kinetic formalism. Inspired by Feynman’s path integral formulation, we extend the
theory to classical interacting systems. The ligand is modeled as a Brownian particle subjected to the
effective nonbonding interaction potential of the receptor. This allows the calculation of the relative binding
affinities of interacting biomolecules in water to be computed as a function of the ligand’s diffusivity and
the curvature of the potential surface in the vicinity of the binding minimum. The calculation is thus
exceedingly rapid. In test cases, the correlation coefficient between actual and computed free energies is
>0.93 for accurate data sets.

Introduction

The accumulation of atomic-resolution information of
protein-ligand interactions available through public databases
of X-ray crystallographic and NMR structures1 has paved the
way for the development of several theoretical methods for
binding free energy prediction2 based on atomistic representa-
tions of the protein-ligand complex. Typically, the theoretical
foundation is based on statistical thermodynamics. For an
interaction between a protein and a ligand, E and I, interacting
in solution to form a complex E*I, we can write the biomo-
lecular reaction

At equilibrium, we can write for the standard free energy of
association

where µ°E*I, µ°E, and µ°I are the standard chemical potentials
of the complex and the individual species, respectively, R is
the ideal gas constant, T is the temperature, and 1/Ki ) kon/koff

is the binding equilibrium constant.
These macroscopic thermodynamic properties connect to

microscopic properties determined by atomistic computer

simulations through the classical statistical thermodynamics
relationship

where QE*I, QE, QI, and QW are the molecular, canonical
ensemble partition functions of the complex, the individual
species, and the solvent, respectively. In principle, the partition
functions enumerate all the possible microscopic states of the
molecules. In practice, the direct calculation of the partition
function for as complex a system as a solvated protein is
theoretically and computationally unfeasible, because of the
configurational integral. For one of the interacting species, say
inhibitor I, this integral is

where xI
N and xW

M are the dimensions of the configurational space
available to the N molecules of species I and the M molecules
of solvent W. E(xI

N, xW
M) is the potential energy of interaction

between I and W.
There have been ingenious efforts to approximate the

calculation, decomposing the free energy into numerous com-
ponents that can be tractably computed.3-14 Nonetheless,
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difficulties persist, mainly because the error in the calculations
of free energy components is larger than the actual, absolute
value of the binding strength. Therefore, although theoretically
on firm ground, the statistical thermodynamics approach to use
atomistic models of biological molecules to predict the free
energy of binding can be fruitful only with the injection of
empirically derived corrections or severe simplifying assump-
tions. We propose the following alternative approach.

Considering the phase orbit of a classical mechanical system
in phase space and integrating out the solvent degrees of
freedom, the path will resemble the motion of a Brownian
particle described by a Langevin equation:

where W(t) is Gaussian noise with average 〈W(t)〉 ) 0 and
correlation 〈W(t)W(t′)〉 ) 2Dδ(t - t′), D is the diffusion of the
system in phase space, and kB and T are the Boltzmann factor
and temperature, respectively.

An equivalent Fokker-Planck equation is

The solution can be written as a path integral15-18

where,

The effective potential is

The conditional probability solution for remaining in the same
state space position for small time intervals is

Here t is very short, of the order of the average duration of
solvent collisions, and n is the number of degrees of freedom.

In a lucid analysis of the Langevin equation, de Grooth19

surmises that the friction coefficient γ ) kBT/D ) 2msf, where

ms is the mass of the solvent molecules and f is the number of
collisions per second, giving the average time per collision as
2msD/kBT. Therefore,

If we consider the reversible reaction between the two areas
of phase space representing the bound and unbound states of
the ligand given by

where [Ibound]aq ) [E*I]aq, the transitional probability to stay in
the bound conformation (denoted by xB) is20

Combining equations 11 and 13, we get

For equations 1 and 12 to be equivalent, since [Ibound]aq )
[E*I]aq, kon ) k-1/[E] and koff ) k1. Substituting these and for
Veff from eq 9, at the minimum energy bound conformation of
[E*I],

where Ki is the equilibrium dissociation constant for eq 1 and
[E] is the free enzyme concentration (see Supporting Information
for a derivation).

Equations 14 and 15 provide an elegant means for computing
the free energy of biomolecular interactions given the bound
state structure. Equation 15 has only two variables: the diffusion
coefficient of the ligand, D, and the second derivatives of the
potential for the bound complex. The latter can be computed
quickly given the bound state, as described later.

Diffusion coefficients for organic molecules can also be
estimated to high accuracy by semiempirical derivatives of the
Stokes-Einstein relation which typically give scaling functions
D ≈ V-0.6, where V is the molar volume of the solute.21

Even though, in theory, the right-hand side (RHS) of eq 15
can be exactly determined, experimental errors would give rise
to empirical coefficients for the two terms in RHS. In practice,
therefore, these variables in eq 15 must be trained with a set of
protein-ligand complexes with known binding free energies.

Here we present a systematic study of the application of eq
15 toward the prediction of binding affinities of three different
enzyme-inhibitor systems: bovine trypsin, �-secretase, and
aldose reductase. We restrict our study to systems for which
experimental inhibitor affinity measures (Ki, IC50) as well as
X-ray crystal structures for the bound complexes are available.
We find that eq 15 is not only a convenient and accurate means
for predicting binding affinities but it also provides useful
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insights on the effect of the oft-ignored assay conditions on
measured binding affinities.

Computational Methods

Diffusivities for organic molecules at infinite dilutions can be
accurately determined by semiempirical derivatives of the Stokes-
Einstein relationship, of which the following equation by Wilke-
Chang is perhaps the most popular,21

where � indicates the degree of solvent association, Mw is the molar
mass of the solvent (18.015 g mol-1), η is solvent viscosity (mPa
s) at temperature T (K), and V is the Le Bas molar volume22 of the
solute at its normal boiling point. It has been shown previously23

that the van der Waals volume of the molecule in Å3 (Vvdw)
estimated by molecular modeling software can approximate the Le
Bas volume. Vvdw was therefore calculated in MOE24 using a grid
approximation with a spacing of 0.75 Å.

The first and second terms on the RHS of eq 15 (denoted as
TermA and TermB, respectively) were computed using DWC for
diffusivity D. These computed terms were used to train the linear
regression fit, giving an equation of the form:

where A and B are empirical constants and I is the intercept. For
the trypsin data set ln[Ki′] ) ln[1 + Ki/[E]], where the binding
constant, Km, and the total enzyme concentration, [ETotal] were
known. The binding affinity data were approximated as ln[1+Ki]
or ln[IC50] for the other two sets.

Since � is a dimensionless empirical parameter, different values
have been proposed for � in the literature for different types of
molecules: 2.6 by Wilke and Chang,21 2.9 for organic electrolytes,25

2.26 for nonelectrolytes,26 and 1.61 for aromatics.27 In this study,
we used � ) 2.6 and introduced a new empirical parameter �, such
that D ) � *DWC, to correct for the use of Vvdw instead of Le Bas
volume, as well as for the presence of other solutes in the assay
buffer. A second normalizing term, λ, was introduced to eliminate
the intercept.

The modified eq 15 in three dimensions is therefore,

Note that parameters � and λ are not necessary to obtain a useful
equation for predicting activities. However, determination of � helps
to compare the effective diffusivities of the ligands between data
sets, while parameter λ nondimensionalizes the probability of eq
10.

For the first derivative of the potential to be zero in Veff (eq 9),
the solvated enzyme/ligand complex has to be proximal to its lowest
energy conformation. Protein/ligand complexes were therefore

minimized prior to computation of the second derivatives. The
ligand/receptor complexes were minimized in MOE24 to a rms
gradient of 0.001 using the MMFF94 force field.28The rms gradient
is the product of norm of the potential gradient and the square root
of the number of unfixed atoms. Nonbonded interactions were
evaluated without any cut-offs. During minimization, the solvent
was implicitly modeled through the Generalized-Born model as
implemented in MOE. Only residues of the receptor within 5 Å of
the ligand were selected for the minimization since we were only
interested in minor side-chain modifications in the vicinity of the
ligand.

If we treat the inhibitor as a rigid body at the potential minumum,
∂2U(x_)/∂x_2, of eq 15 is the trace of the resultant three-dimensional
Hessian matrix (k ) kxx + kyy + kzz). The components of the Hessian
matrix were evaluated from a finite difference of the forces about
the potential minimum as follows:

with ∆i ) ∆j ) 1 × 10-6 Å, where i and j refer to the three
Cartesian dimensions x,y and z, Fi is the force at position i. Forces
were evaluated using the Potential[] function in MOE. The trace
of the Hessian is therefore k ) kxx + kyy + kzz.

Statistical analysis and linear regression was carried out using
JMP.29 The leave-one-out cross validation coefficient, R2

cv, and the
root-mean-square error of cross validation (scv) were computed using
MATLAB.30

Results

TermA and TermB of eq 17 were computed for the entire
data set (Table 1). The linear regression fit for the entire data
set is presented in figure 1. While the R2 of the fit is not very
significant (0.51), a close examination of Figure 1 presents some
remarkable trends. Significant clustering is observed for points
belonging to the same protein, with either systematic over- or
under prediction within data-points of those subsets. We
assumed that these differences were due to either the specific
details of the assay buffers, or the chemical characteristics of
ligands themselves, both of which would affect the ligands’
diffusivities. The Wilke-Chang equation (eq 16) evaluates
diffusivities for molecules at infinite dilution, and systematic
deviations from the calculated diffusivities are expected that
are dependent on the assay buffers. We therefore decided that
each subset had to be trained separately for better fit. Also
intriguing was the presence of two clusters in the �-secretase
data set, one of which was significantly underpredicted (Figure
1) and belonged entirely to data from the work of the same
group presented in two different papers.31,32 A comparison of
the assays between this subset and the rest of the �-secretase
complexes revealed that these assays had 10% dimethylsulfoxide
(DMSO) in the assay buffer. DMSO is a highly viscous solvent
and is bound to have significant effect on the diffusivity of the
ligand molecules. Aminabhavi and Gopalakrishna33 report a
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Table 1. Dataset of Structures Used for Training the Statistical Linear Regression Fit

PDB Ki/IC50
a (nM) ln [Ki′]b T (K) µ (mPa s) DWC × 109 (m2/s) kc (J/m2) TermA TermB Rfull

d Rsubset
d

Subset 1: Bovine trypsin
1ghz 16000 8.764 298 0.891 0.640 202.6 0.294 76.418 1.780 0.859
1gi2 3600 7.273 298 0.891 0.635 202.5 0.289 76.443 0.302 -0.665
1gi6 1700 6.523 298 0.891 0.627 218.5 0.304 76.481 -0.064 -0.129
1o2k 120 3.882 298 0.891 0.533 248.1 0.249 76.968 -1.784 -0.988
1o2q 21 2.189 298 0.891 0.509 294.0 0.270 77.105 -2.636 -0.043
1o2x 1400 6.329 298 0.891 0.507 233.0 0.212 77.116 0.609 0.768
1o30 170 4.227 298 0.891 0.466 256.7 0.197 77.373 -0.788 0.411
1o33 1800 6.580 298 0.891 0.642 219.2 0.320 76.408 -0.014 0.144
1o36 1100 6.088 298 0.891 0.454 187.1 0.136 77.449 0.372 -0.560
1o38 150 4.103 298 0.891 0.491 268.6 0.229 77.215 -0.977 0.571
1o3d 74 3.405 298 0.891 0.531 270.7 0.270 76.978 -1.883 -0.108
1o3g 11 1.601 298 0.891 0.525 296.1 0.289 77.014 -3.256 -0.443

Subset 2a: �-secretase (with 10% v/v DMSO)
2ohk 2000000 14.509 298 0.891 0.842 105.1 0.264 75.595 3.984 -0.190
2ohl 2000000 14.509 298 0.891 0.847 168.7 0.428 75.577 6.594 0.175
2ohm 310000 12.644 298 0.891 0.692 102.5 0.174 76.186 2.846 -0.293
2ohn 500000 13.122 298 0.891 0.696 120.1 0.206 76.167 3.778 0.203
2ohp 94000 11.451 298 0.891 0.620 161.9 0.220 76.514 3.628 -0.257
2ohq 25000 10.127 298 0.891 0.532 245.9 0.246 76.976 4.435 0.045
2ohr 100000 11.513 298 0.891 0.571 121.3 0.140 76.763 3.306 0.436
2ohs 40000 10.597 298 0.891 0.541 148.5 0.154 76.924 3.212 0.098
2oht 9100 9.116 298 0.891 0.541 141.0 0.146 76.924 1.606 -1.402
2ohu 4200 8.343 298 0.891 0.454 293.5 0.214 77.451 3.892 -0.218
2f3e 156 5.050 298 0.891 0.342 369.5 0.153 78.296 2.750 -0.815
1tqf 1400 7.244 298 0.891 0.389 335.6 0.179 77.914 3.955 0.159

Subset 2b: �-secretase (no DMSO)
1xs7 1.6 0.956 310 0.692 0.335 238.0 0.087 78.423 -1.947 -0.124
1ym2 10 2.303 298 0.891 0.333 301.1 0.118 78.381 -0.256 1.643
1ym4 39 3.664 298 0.891 0.361 403.8 0.186 78.140 1.314 2.566
2b8v 98 4.585 298 0.891 0.397 284.2 0.158 77.853 0.725 0.140
2fdp 26 3.258 298 0.891 0.374 270.1 0.134 78.029 -0.349 -0.219
2f3f 190 5.247 298 0.891 0.401 265.6 0.151 77.823 1.155 0.330
2g94 0.3 0.262 310 0.692 0.362 395.1 0.169 78.189 -2.175 -0.816
2iqg 5 1.609 310 0.692 0.385 271.2 0.131 78.003 -2.132 -2.166
2irz 12 2.485 310 0.692 0.416 382.1 0.216 77.770 -0.741 -1.208
2is0 200 5.298 310 0.692 0.416 400.2 0.226 77.770 2.239 1.875
2oah 11 2.398 298 0.891 0.409 331.0 0.196 77.765 -1.185 -1.885
2ph6 27 3.296 310 0.692 0.418 381.1 0.218 77.754 0.038 -0.498
2q11e 2775 7.928 298 0.891 0.446 213.9 0.150 77.506 2.647 0.082
2q15e 33.9 3.523 298 0.891 0.394 312.8 0.172 77.874 -0.039 -0.376
2vie 33 3.497 298 0.891 0.373 299.5 0.148 78.036 0.143 0.453
2vj6 13 2.565 298 0.891 0.373 326.3 0.161 78.038 -0.571 -0.123
2vj7 40 3.689 298 0.891 0.388 264.2 0.141 77.917 -0.215 -0.623
2vj9 180 5.193 298 0.891 0.402 311.9 0.178 77.817 1.519 0.931
2p4j 1.1 0.742 310 0.692 0.346 429.3 0.168 78.320 -1.222 0.843

Subset 3: Aldose reductase
1el3 108 4.682 298 0.891 0.498 138.5 0.122 77.170 -2.308 1.894
1iei 44 3.784 298 0.891 0.528 344.1 0.340 76.996 -0.312 0.269
1mar 60 4.094 298 0.891 0.520 442.9 0.423 77.044 1.536 0.772
1pwl 73 4.290 298 0.891 0.524 387.1 0.375 77.022 0.874 0.881
1pwm 9 2.197 298 0.891 0.668 160.9 0.254 76.292 -5.905 -4.204
1t41 11 2.398 298 0.891 0.542 327.9 0.340 76.919 -1.967 -1.431
1us0 30 3.401 298 0.891 0.540 328.8 0.339 76.932 -0.948 -0.378
1x97 570 6.346 298 0.891 0.666 229.7 0.360 76.302 0.006 -0.019
1z3n 5 1.609 298 0.891 0.549 287.7 0.307 76.877 -3.453 -2.393
1z8a 0.5 -0.693 298 0.891 0.609 241.4 0.317 76.569 -6.747 -5.960
1z89 0.84 -0.174 298 0.891 0.608 367.0 0.480 76.571 -3.555 -5.439
2fzd 13 2.565 298 0.891 0.559 303.4 0.336 76.824 -2.231 -1.655
2ine 96000 11.472 298 0.891 0.899 100.7 0.288 75.399 0.616 1.405
2inz 3500 8.161 298 0.891 0.873 100.4 0.271 75.487 -2.651 -1.548
2iq0 68600 11.136 298 0.891 0.940 68.0 0.213 75.267 -1.441 0.528
2is7 4400 8.390 298 0.891 0.797 90.8 0.204 75.761 -2.491 -0.188
2i16 30 3.401 298 0.891 0.538 329.8 0.337 76.942 -0.932 -0.336
2i17 30 3.401 298 0.891 0.538 328.1 0.336 76.942 -0.960 -0.336
2ikg 530 6.273 298 0.891 0.646 306.3 0.452 76.393 1.762 0.275
2ikh 4100 8.319 298 0.891 0.712 260.6 0.467 76.100 2.971 1.121
2iqd 25500 10.146 298 0.891 0.938 67.7 0.210 75.274 -2.438 -0.432
2nvc 550 6.310 303 0.798 0.565 261.5 0.285 76.819 0.679 2.071
2nvd 140 4.942 303 0.798 0.623 71.3 0.095 76.524 -4.886 -0.500

a Kis in italics. b Where ln[Ki′] is ln[1 + Ki/[E]] (see Supporting Information) for subset1 where [S] ) Km and [E] ) 10nM, and ln[1+Ki] or ln[IC50]
elsewhere. c k ) kxx+kyy+kzz is the trace of the Hessian matrix. d R is the residual (the difference between actual and predicted ln[Ki′]). e Kis converted to
IC50s from Km ) 24 µM and [S] ) 50 µM.
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viscoscity (mPa s) increase to 1.787 from 0.891 as the mole
fraction of water changes from 1 to 0.9. A 10% DMSO buffer,
therefore increases the buffer viscoscity by ∼28%, sufficient
to cause the relative shift observed in Figure 1. It is also quite
likely that other effects of DMSO, such as altered solubility
and hydrophobicity, play an important role toward the activity
as well. These data points were therefore separated into two
separate subsets for training the linear regression fit.

The statistics of the linear regression fit for the four different
subsets belonging to bovine trypsin, �-secretase (with and
without DMSO) and aldose reductase are presented in Table 2.

Bovine Trypsin. Experimental evaluations of the inhibitor
affinity measurements are very sensitive to experimental condi-
tions with typical coefficients of variation of ∼20% in the
reported analytical measurements. The best scenario therefore
involves data obtained by the same laboratory and the use of
the same assay. The trypsin data set, therefore, was of very high
quality, since all of the data points used in that set were obtained
by the same team. Katz et al.34,35 conducted a high-throughput
study involving the determination of over 300 high resolution
crystal structures of trypsin bound with small molecules
inhibitors (2-(2-phenol-indoles and 2-(2-phenol)-benzamida-
zoles) over a wide range of pH. Scanning through the available
structures led to a data set of 12 inhibitors with their inhibition
constants (Kis). This reduced data set was due to the fact that
all the inhibitors studied here exhibit a parabolic pH dependence
with a minimum in Ki and therefore only structures determined
at pHs close to Ki(min) were used, to ensure that the selected
crystal structures captured the protonation state of the inhibitors
without any ambiguity. At pH’s away from Ki(min) a mixture
of protonation states is expected for the inhibitors thereby
complicating the picture. This high resolution data set involving
crystal structures for all the inhibitors ensures that any errors
due to in silico mutations and the subsequent molecular
mechanics minimization step are avoided. The linear regression
fit for this data set is shown in figure 2.

While there are no outliers in this data set, the hydroxyl
groups of structures 1o36 and 1o3g had to be protonated for a

better fit. This was not unreasonable considering that the pKa’s
of the hydroxyl groups for the free molecules are predicted to
be close to the pH of the assays. The activities are predicted to
very high accuracy (R2 ) 0.93, σ ) 0.62, Table 2) in the
prediction of ln[Ki′]. A σ ) 0.62 implies that the Kis are
predicted to the correct order of magnitude, such resolution is
rarely seen in computational free energy prediction.

�-Secretase. The �-secretase data set is derived from the work
of several independent laboratories each with differing assay
conditions, substrates, substrate- and enzyme concentrations and
measures of affinity (Ki and IC50s) (Table 1). The LHS of eq
18 has the term 1 + Ki/[E] () IC50/[E*I]) (see Supporting
Information). The concentration of the enzyme used in these
assays was not available for most of the data-points and was
therefore approximated by ln[1 + Ki] or ln[IC50] for consistency.
This approximation is expected to increase the noise in the data
set to above that of experimental error. The linear regression
fit for the two subsets of �-secretase are presented in Figures 3
and 4. 1tqf and 2f3e were included in data set 1 based on the
regression fit. It was not possible for us to determine if that
was reasonable, as details of their assays36,37 are not readily
available. Congreve et al. point that the inhibition data for the
inhibitor of 2oht should be treated with caution as they exhibited
a high hill slope.31 Interestingly, 2oht is identified as an outlier
in the linear regression, and in fact, its inclusion in the fit
significantly reduces the accuracy of the fit (R2 ) 0.95, σ )
0.5488, F ) 63.43), to below the accuracy obtained by including
TermB alone in the fit (R2 ) 0.95, σ ) 0.5213, F ) 140.3626).
This underscores the importance of accuracy in the data set in
training the regression fit. For this data set, TermB dominates
in the fit, with TermA offering further resolution to the
prediction of activities. In fact the agreement between predicted
and actual IC50’s is remarkable, a σ ) 0.2913 implying that the
predicted IC50s are within ∼35% of experimental Ki’s, with
experimental error itself typically of the order of 20%. The
domination of TermB in the prediction formula is due to the
suppressed values of the diffusivities obtained (Table 2), which
appears to be the effect of DMSO in the assay. Since, in TermA
the trace of the Hessian matrix is multiplied by D2, its value is
very sensitive to the diffusion coefficient. Significantly lower
values of D therefore increase the significance of TermB toward
the inhibitory activity.

The second data set has five outliers, 1ym1, 1ym2, 2iso, 2irz,
and 2iqg. A sixth outlier, the ligand of 2oah, was assayed
without separation of its stereoisomers, therefore justifying its
exclusion from the fit. Due to the significant reduction in the
accuracy of prediction with the inclusion of 2oht in the previous
data set, we chose to exclude 1ym1, 1ym2, 2iqg, 2iso, and 2irz
from the fit, even though we are aware that the exclusion of
these points artificially improves the statistics of the fit.
Supporting our choice is the fact that the four of the outliers
are from the work of two different papers,38,39 and three of these,

(34) Katz, B. A.; Elrod, K.; Luong, C.; Rice, M. J.; Mackman, R. L.;
Sprengeler, P. A.; Spencer, J.; Hataye, J.; Janc, J.; Link, J.; Litvak, J.;
Rai, R.; Rice, K.; Sideris, S.; Verner, E.; Young, W. J. Mol. Biol.
2001, 307, 1451–1486.

(35) Katz, B. A.; Elrod, K.; Verner, E.; Mackman, R. L.; Luong, C.;
Shrader, W. D.; Sendzik, M.; Spencer, J. R.; Sprengeler, P. A.;
Kolesnikov, A.; Tai, V. W.; Hui, H. C.; Breitenbucher, J. G.; Allen,
D.; Janc, J. W. J. Mol. Biol. 2003, 329, 93–120.

(36) Coburn, C. A.; Stachel, S. J.; Li, Y. M.; Rush, D. M.; Steele, T. G.;
Chen-Dodson, E.; Holloway, M. K.; Xu, M.; Huang, Q.; Lai, M. T.;
DiMuzio, J.; Crouthamel, M. C.; Shi, X. P.; Sardana, V.; Chen, Z. G.;
Munshi, S.; Kuo, L.; Makara, G. M.; Annis, D. A.; Tadikonda, P. K.;
Nash, H. M.; Vacca, J. P.; Wang, T. J. Med. Chem. 2004, 47, 6117–
6119.

(37) Hanessian, S.; Yang, G.; Rondeau, J. M.; Neumann, U.; Betschart,
C.; Tintelnot-Blomley, M. J. Med. Chem. 2006, 49, 4544–4567.

(38) Hanessian, S.; Yun, H.; Hou, Y.; Yang, G.; Bayrakdarian, M.; Therrien,
E.; Moitessier, N.; Roggo, S.; Veenstra, S.; Tintelnot-Blomley, M.;
Rondeau, J. M.; Ostermeier, C.; Strauss, A.; Ramage, P.; Paganetti,
P.; Neumann, U.; Betschart, C. J. Med. Chem. 2005, 48, 5175–5190.

Figure 1. Linear regression fit for the entire data set: 9 (subset 1), † (subset
2a), + (subset 2b), and b (subset 3).
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2iqg, 2iso, and 2irz (and 2ph6), use as a substrate a fusion
protein containing maltose binding protein at the amino terminal
end and 125 amino acids of the amyloid precursor protein amino
terminal end. All the other assays use significantly smaller
peptide substrates in the assay. The use of a constant � in the
Wilke-Chang equation for the empirical fit could lead to errors
in the estimation of D, since its value suggested value varies
from 1.61 to 2.9 depending on the chemical nature of the
molecule.25,27 This is a flaw in our analysis since the specific
chemical characteristics of the molecule were not considered
in the empirical determination of D. The ligands of 1ym1 and
1ym2, for instance, have very little aromatic character to them
while that is not true of the other ligands. Also, conditions

specific to those assays may also be responsible for the observed
deviation. Even so, the deviation in the predicted ln[Ki′]s for
these outliers is within a factor of 2.5, which implies that the
predicted activity is correct to an order of magnitude. In general,
since the ligands in this study are significantly more complex
than those used to drive the empirical fit in the Wilke-Chang
equation, extrapolation to more complex molecules may increase
the error.

Aldose Reductase. The aldose reductase data set40-53 is
expected to be most noisy, since the data spans over a decade

(39) Rajapakse, H. A.; Nantermet, P. G.; Selnick, H. G.; Munshi, S.;
McGaughey, G. B.; Lindsley, S. R.; Young, M. B.; Lai, M. T.;
Espeseth, A. S.; Shi, X. P.; Colussi, D.; Pietrak, B.; Crouthamel, M. C.;
Tugusheva, K.; Huang, Q.; Xu, M.; Simon, A. J.; Kuo, L.; Hazuda,
D. J.; Graham, S.; Vacca, J. P. J. Med. Chem. 2006, 49, 7270–7273.

(40) El-Kabbani, O.; Darmanin, C.; Oka, M.; Schulze-Briese, C.; Tomizaki,
T.; Hazemann, I.; Mitschler, A.; Podjarny, A. J. Med. Chem. 2004,
47, 4530–4537.

(41) Wilson, D. K.; Tarle, I.; Petrash, J. M.; Quiocho, F. A. Proc. Natl.
Acad. Sci. U.S.A. 1993, 90, 9847–9851.

(42) Urzhumtsev, A.; TeteFavier, F.; Mitschler, A.; Barbanton, J.; Barth,
P.; Urzhumtseva, L.; Biellmann, J. F.; Podjarny, A. D.; Moras, D.
Structure 1997, 5, 601–612.

(43) Calderone, V.; Chevrier, B.; Van Zandt, M.; Lamour, V.; Howard,
E.; Poterszman, A.; Barth, P.; Mitschler, A.; Lu, J. H.; Dvornik, D. M.;
Klebe, G.; Kraemer, O.; Moorman, A. R.; Moras, D.; Podjarny, A.
Acta Crystallogr. D 2000, 56, 536–540.

(44) Kinoshita, T.; Miyake, H.; Fujii, T.; Takakura, S.; Goto, T. Acta
Crystallogr. D 2002, 58, 622–626.

(45) Howard, E. I.; Sanishvili, R.; Cachau, R. E.; Mitschler, A.; Chevrier,
B.; Barth, P.; Lamour, V.; Van Zandt, M.; Sibley, E.; Bon, C.; Moras,
D.; Schneider, T. R.; Joachimiak, A.; Podjarny, A. Proteins-Struct.
Funct. Bioinf. 2004, 55, 792–804.

(46) Ruiz, F.; Hazemann, I.; Mitschler, A.; Joachimiak, A.; Schneider, T.;
Karplus, M.; Podjarny, A. Acta Crystallogr. D 2004, 60, 1347–1354.

(47) Van Zandt, M. C.; Jones, M. L.; Gunn, D. E.; Geraci, L. S.; Jones,
J. H.; Sawicki, D. R.; Sredy, J.; Jacot, J. L.; DiCioccio, A. T.; Petrova,
T.; Mitschler, A.; Podjarny, A. D. J. Med. Chem. 2005, 48, 3141–
3152.

(48) El-Kabbani, O.; Darmanin, C.; Schneider, T. R.; Hazemann, I.; Ruiz,
F.; Oka, M.; Joachimiak, A.; Schulze-Briese, C.; Tomizaki, T.;
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805–813.
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Table 2. Summary of Statistics of the Linear Regression Fit

set Ia Aa Ba size of set outliers R2b Fisherbvalue σb Q2c σcv
c φd κd λ × 1012 (m)d

Full 295.407 -16.270 -3.712 66 0 0.51 33.29 2.60 0.46 2.68 2.09 -3.71 6.30
1 824.647 -60.588 -10.455 12 0 0.93 56.78 0.65 0.85 0.81 2.41 -10.45 9.18
2a 270.655 -2.589 -3.377 9 1 0.98 194.43 0.29 0.95 0.44 0.88 -3.38 2.18
2b 723.108 -26.160 -9.178 13 6 0.93 70.92 0.59 0.88 0.68 1.69 -9.18 6.63
3e 319.651 0.052 -4.106 20 3 0.84 44.76 1.25 0.77 1.39 - -4.11 -
3e 319.516 0.000 -4.104 20 3 0.84 94.78 1.22 0.80 1.28 - -4.10 -

a See eq 17. b Statistics of linear regression fit. c leave-one-out cross validation R2 and σ. d See eq 18. e Value of A is too low for φ and λ to be
determined accurately.

Figure 2. Linear regression fit for bovine trypsin (data set 1).

Figure 3. Linear regression fit for the �-secretase data set: 2a with
complexes whose assays contained 10% DMSO ([ - outlier, 2oht).

Figure 4. Linear regression fit for the �-secretase data set: 2b with
complexes whose assays contained no DMSO ([ - outliers).
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of work and is obtained from the work of several different
laboratories. In fact an examination of the assays shows that
the affinity data was obtained from the use of a wide range of
substrates (glucose, xylitol, xylose, glyceraldehydes, and benzyl
alcohol). The LHS of eq 18 involves [E] whose value depends
on [ETotal] and the ratio of [S]/Km, where [S] is the substrate
concentration. Assays using different substrates using varying
ratios of [S]/Km are therefore likely to introduce further noise
into the data set beyond that due to experimental error. In fact,
for two of the inhibitors, different values of affinity separated
by an order of magnitude have been reported by different
groups; 4444 and 40054 nM for zenarestat (1iei) and, 354 and
6054 nM for zopolrestat (1mar). We used the more recent
estimates in our analysis for consistency.

Since eq 18 predicts the affinities to very high precision, noisy
data is expected to lead to inaccurate empirical prediction
formulas for the activity. This is observed in the fit for this
data set (figure 5), where the contribution of the TermA is not
captured at all. This data set has three outliers: 1pwl, 1z8a, 1z89.
While we can not explain the inaccuracy in the prediction of
1pwl, an examination of the assay buffers of the ligands of 1z89
and 1z8a, not surprisingly, found 20% DMSO in the assay
buffer. Here, (σ ) 1.22) activities are predicted to within an
order of magnitude, which is close to the expected level of noise
in this data set. The widely varying chemical composition of
the ligands in this data set will also increase errors in the
evaluation of the diffusivities. A high sensitivity to the diffu-
sivity is expected in the prediction of the activities due to the
nature of eq 18, with the sensitivity being much higher for
TermA than TermB, since a D2 features in TermA while TermB
involves ln (1/D3).

Discussion

In general it appears that eq 18 can predict free energies
almost to the precision of the available data for a linear
regression fit. Of great interest is the effect of the magnitude of

the diffusion coefficient on the observed inhibitor affinities. The
systematic error observed in the residuals in Figure 1 (Table 1)
appears to be due to the different correction factor (φ) that was
required for different enzyme assays. The correction factor, φ,
was determined by equalizing the coefficients of TermA and
TermB in the linear regression fit (Table 2). The value of φ

explains the strong dependence on TermB in data set 2a. This
appears to be due to the lower diffusivities of these molecules
in comparison to the trypsin data set. Larger diffusivities of the
ligands in the trypsin data set reduce the accuracy of prediction
with TermB alone in the trypsin data set (R2 ) 0.39, σ ) 1.55,
F)5.84). The decrease in the diffusivities of data set 2a is most
likely due to the increased viscosity of the solution due to
addition of DMSO, since viscosity appears in the denominator
of Wilke-Chang equation. The sensitivity of the activity of the
molecules to their diffusion coefficients highlights the impor-
tance of the conditions of the assay toward the observed activity.

An interesting implication of the strong dependence on TermB
for subset 2a is that the energetics of the binding are of little
consequence for predicting activity for such systems. The
activity almost entirely depends on the diffusion coefficient. The
Wilke-Chang equation implies that activity will be strongly
correlated with molecular volume. Since molecular masses and
volumes are strongly correlated (R2 ) 0.96 for the entire data
set), the molecular mass would also be highly correlated with
activity. This interesting fact has been observed by Kim and
Skolnick,55 where a comparison of scoring functions of different
docking algorithms led to the observation that molecular mass
was as good a predictor of activity as the scoring functions
themselves. There, the authors argue that this observation may
be due to the fact that most rational drug design involves
improvement of efficacy of drug leads through the addition of
favorable functional moeties, thus leading to an increase in mass.
Equation 18 implies that the reason for the observed correlation
is more fundamental since the size of the molecule directly
affects its diffusivity. In fact we find that the use of the logarithm
of the molecular weight (ln(MW)) and k/MW (where k is the trace
of the Hessian matrix) resulted in empirical correlations with
similar accuracies to those achieved by eq 18.

Apart from the composition of the assay buffer, other factors
such as temperature also strongly influence D. For instance, from
the Wilke-Chang equation, the ratio of diffusivities of a molecule
at infinite dilution at temperatures 310 and 298 would be 1.34.
Thus, for a low molecular weight ligand, eq 18 would predict
significantly different activities at different temperatures.

One common assumption made to simplify the configurational
integral of eq 4 is that it can be approximated by “end-point”
calculations that limit the computation to the solvated bound/
unbound ligand/receptor alone. Equation 18 implies that such
an approximation will capture only a part of the picture,
neglecting the contribution of the molecules’ diffusivity toward
binding affinity.

Despite the success of eq 18 with the trypsin and �-secretase
data sets and the fairly low computational cost of its evaluation,
several problems exist with its usage on a large scale for
predicting activities. The first comes from the limitations of the
empirical nature of the Wilke-Chang equation for predicting
diffusivities. It is not surprising therefore, that the highest
accuracy in the prediction of activities was achieved for data
sets 1 and 2a where the ligands were of similar chemical nature.
For a data set with molecules of widely differing properties,

(50) Brownlee, J. M.; Carlson, E.; Milne, A. C.; Pape, E.; Harrison, D. H. T.
Bioorg. Chem. 2006, 34, 424–444.
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Klebe, G. J. Mol. Biol. 2006, 363, 174–187.
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Cousido, A.; Lunin, V. Y.; Joachimiak, A.; Podjarny, A. Acta
Crystallogr. D 2006, 62, 1535–1544.

(53) Steuber, H.; Heine, A.; Klebe, G. J. Mol. Biol. 2007, 368, 618–638.
(54) Ehrig, T.; Bohren, K. M.; Prendergast, F. G.; Gabbay, K. H.

Biochemistry 1994, 33, 7157–7165. (55) Kim, R.; Skolnick, J. J. Comput. Chem. 2008, 29, 1316–1331.

Figure 5. Linear regression fit for the aldose reductase data set 3. ([ -
outlier, only 1pwl is shown.)
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such as data set 3, the use of a single empirical coefficient will
most likely lead to significant errors in the prediction of diffusion
coefficients. Besides, the success of the Wilke-Chang equation
has been demonstrated for a limited number of small organic
molecules in solution and it is not clear if its extrapolation to
larger and chemically more diverse molecules typical of drug
candidates would lead to accurate predictions of diffusion
coefficients. It appears therefore that independent methods for
determining diffusivities may have to supplement drug design
experiments.

A second difficulty of the method outlined here is with the
determination of the trace of the Hessian matrix. The trace is
very sensitive to the final minimized complex as well as to the
minimization protocol used. The correlation coefficient, R2, of
the linear regression fit for trypsin data set decreases significantly
when cut-offs (8 Å) were used for evaluating the nonbonded
interactions. A Generalized-Born solvation model was necessary
during minimization to simulate the effect of the solvent. This
is expected since the minimum of Veff is for the solvated
complex. Explicit solvation could likely improve the fit even
more, but the computational costs would quickly become
prohibitive. Careful attention must be paid to the protonation
states of the ligands and any titrable protein side-chains. For
instance, 1o36 and 1o3g fit only after protonation of a hydroxyl
group.

Also interesting is the relationship that results for Veff, where
the significant factor for unbinding is not the interaction potential
as intuition suggests, but its second derivative. In other words,
the unbinding free energy depends not on the depth of the
potential well that the ligand finds itself in, but rather on the
curvature of this potential in the vicinity of energy minimum.
This is a consequence of the overdamping effect of the solvent
that appears as an assumption in the Fokker-Plank equation.

Our greatest challenge in this work, was to find data sets of
sufficiently large size (for statistical significance) that met all
of our criteria, namely the availability of affinity data together
with crystal structures for every complex, as well as the absence
of significant conformational rearrangements in the active-site
associated with binding. The absence of metal atoms and
significant interactions with crystal waters was also considered
essential as we were interested in the simplest possible data
sets to test the theory. We believe that it is due to this choice
that we obtained reasonably good fits despite significant
simplification of the physics. It is quite likely that other rate-
limiting steps such as secondary binding events prior to
unbinding or conformational rearrangements in the active-site
during unbinding would significantly complicate the picture and
perhaps demand a less trivial solution.

Two other methods for affinity prediction that were derived
involving assumptions, albeit very different from ours, that lead
to a simplification of the underlying physics and hence a
reduction of the computational expense can be mentioned here.
The first of these is the Linear Interaction Energy (LIE) method
developed by Aqvist and co-workers.56 The LIE method was

derived as an approximation to free energy perturbation, where
a linear response is assumed for electrostatic interactions,
together with an empirical expression for nonpolar effects. The
interaction energies are evaluated from the average of molecular
dynamics simulation (MD) energies. The second method is the
Mining Minima method developed by Gilson and co-workers57

and applies to the direct computation of the configurational
integral of a molecule (eq 4) as a sum of the contribution of
low energy states using a Monte Carlo (MC) technique. Both
methods require conformational sampling through MD or MC
techniques. In comparison, our method has the advantage that
a single conformation is sufficient for free energy prediction.

Conclusions

In a recent review of docking and scoring functions, Leach
et al.58 point out that the accuracy of scoring functions has
reached a plateau and that there is need for a breakthrough to
develop. The path-integral formalism presented in this work
offers an alternate perspective on the problem of binding free
energy prediction.

The practical complexity of the traditional statistical ther-
modynamics approach implies that the effect of the assay buffer
cannot be reasonably accounted for without significantly
increasing the already intractably high computational time of
estimating the configurational integral of eq 4. The path integral
formalism presented here is elegant not only for its high
accuracy, but also for its computational expense, which is
minimal.

In its current form, eq 18 has great potential for the
development of improved scoring functions for docking algo-
rithms. A more extensive verification of eq 18 is certainly
necessary, and at this point this is mainly limited by lack of
high quality data sets such as that of bovine trypsin. It remains
to be seen how eq 18 performs in real life drug design scenarios,
where typically only a single bound complex is available as a
template for the prediction of other bound complexes through
docking. It would also greatly help if inhibition experiments
were supplemented with experimental determination of the
ligands’ diffusivities in their respective buffers, which would
remove the reliance on empirical relations such as Wilke-Chang
equation that was used in this work.
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